標準ライブラリヘッダー <numeric>
From cppreference.com
このヘッダーは数値ライブラリの一部です。
関数 | |
| (C++11) |
開始値からの連続した増分値で範囲を埋める (関数テンプレート) |
| (C++23) |
開始値からの連続した増分値で範囲を埋める (アルゴリズム関数オブジェクト) |
| 範囲の要素を合計または畳み込む (関数テンプレート) | |
| (C++17) |
std::accumulate に似ているが、順序不同 (関数テンプレート) |
| (C++17) |
呼び出し可能オブジェクトを適用し、順序不同に縮約する (関数テンプレート) |
| 2つの範囲の要素の内積を計算する (関数テンプレート) | |
| 範囲内の隣接する要素間の差を計算する (関数テンプレート) | |
| 範囲の要素の部分和を計算する (関数テンプレート) | |
| (C++17) |
std::partial_sum に似ているが、i 番目の入力要素を i 番目の合計に含める (関数テンプレート) |
| (C++17) |
std::partial_sum に似ているが、i 番目の入力要素を i 番目の合計から除外する (関数テンプレート) |
| (C++17) |
呼び出し可能オブジェクトを適用し、インクルーシブスキャンを計算する (関数テンプレート) |
| (C++17) |
呼び出し可能オブジェクトを適用し、エクスクルーシブスキャンを計算する (関数テンプレート) |
| (C++17) |
2つの整数の最大公約数を計算する (関数テンプレート) |
| (C++17) |
2つの整数の最小公倍数を計算する (関数テンプレート) |
| (C++20) |
2つの数値またはポインタの中間点 (関数テンプレート) |
| (C++26) |
2つの整数に対する飽和加算操作 (関数テンプレート) |
| (C++26) |
2つの整数に対する飽和減算操作 (関数テンプレート) |
| (C++26) |
2つの整数に対する飽和乗算操作 (関数テンプレート) |
| (C++26) |
2つの整数に対する飽和除算操作 (関数テンプレート) |
| (C++26) |
別の整数型の範囲にクランプされた整数値を返す (関数テンプレート) |
[編集] 概要
namespace std { // accumulate template<class InputIt, class T> constexpr T accumulate(InputIt first, InputIt last, T init); template<class InputIt, class T, class BinaryOperation> constexpr T accumulate(InputIt first, InputIt last, T init, BinaryOperation binary_op); // reduce template<class InputIt> constexpr typename iterator_traits<InputIt>::value_type reduce(InputIt first, InputIt last); template<class InputIt, class T> constexpr T reduce(InputIt first, InputIt last, T init); template<class InputIt, class T, class BinaryOperation> constexpr T reduce(InputIt first, InputIt last, T init, BinaryOperation binary_op); template<class ExecutionPolicy, class ForwardIt> typename iterator_traits<ForwardIt>::value_type reduce(ExecutionPolicy&& exec, ForwardIt first, ForwardIt last); template<class ExecutionPolicy, class ForwardIt, class T> T reduce(ExecutionPolicy&& exec, ForwardIt first, ForwardIt last, T init); template<class ExecutionPolicy, class ForwardIt, class T, class BinaryOperation> T reduce(ExecutionPolicy&& exec, ForwardIt first, ForwardIt last, T init, BinaryOperation binary_op); // inner product template<class InputIt1, class InputIt2, class T> constexpr T inner_product(InputIt1 first1, InputIt1 last1, InputIt2 first2, T init); template<class InputIt1, class InputIt2, class T, class BinaryOperation1, class BinaryOperation2> constexpr T inner_product(InputIt1 first1, InputIt1 last1, InputIt2 first2, T init, BinaryOperation1 binary_op1, BinaryOperation2 binary_op2); // transform reduce template<class InputIt1, class InputIt2, class T> constexpr T transform_reduce(InputIt1 first1, InputIt1 last1, InputIt2 first2, T init); template<class InputIt1, class InputIt2, class T, class BinaryOperation1, class BinaryOperation2> constexpr T transform_reduce(InputIt1 first1, InputIt1 last1, InputIt2 first2, T init, BinaryOperation1 binary_op1, BinaryOperation2 binary_op2); template<class InputIt, class T, class BinaryOperation, class UnaryOperation> constexpr T transform_reduce(InputIt first, InputIt last, T init, BinaryOperation binary_op, UnaryOperation unary_op); template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class T> T transform_reduce(ExecutionPolicy&& exec, ForwardIt1 first1, ForwardIt1 last1, ForwardIt2 first2, T init); template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class T, class BinaryOperation1, class BinaryOperation2> T transform_reduce(ExecutionPolicy&& exec, ForwardIt1 first1, ForwardIt1 last1, ForwardIt2 first2, T init, BinaryOperation1 binary_op1, BinaryOperation2 binary_op2); template<class ExecutionPolicy, class ForwardIt, class T, class BinaryOperation, class UnaryOperation> T transform_reduce(ExecutionPolicy&& exec, ForwardIt first, ForwardIt last, T init, BinaryOperation binary_op, UnaryOperation unary_op); // partial sum template<class InputIt, class OutputIt> constexpr OutputIt partial_sum(InputIt first, InputIt last, OutputIt result); template<class InputIt, class OutputIt, class BinaryOperation> constexpr OutputIt partial_sum(InputIt first, InputIt last, OutputIt result, BinaryOperation binary_op); // exclusive scan template<class InputIt, class OutputIt, class T> constexpr OutputIt exclusive_scan(InputIt first, InputIt last, OutputIt result, T init); template<class InputIt, class OutputIt, class T, class BinaryOperation> constexpr OutputIt exclusive_scan(InputIt first, InputIt last, OutputIt result, T init, BinaryOperation binary_op); template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class T> ForwardIt2 exclusive_scan(ExecutionPolicy&& exec, ForwardIt1 first, ForwardIt1 last, ForwardIt2 result, T init); template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class T, class BinaryOperation> ForwardIt2 exclusive_scan(ExecutionPolicy&& exec, ForwardIt1 first, ForwardIt1 last, ForwardIt2 result, T init, BinaryOperation binary_op); // inclusive scan template<class InputIt, class OutputIt> constexpr OutputIt inclusive_scan(InputIt first, InputIt last, OutputIt result); template<class InputIt, class OutputIt, class BinaryOperation> constexpr OutputIt inclusive_scan(InputIt first, InputIt last, OutputIt result, BinaryOperation binary_op); template<class InputIt, class OutputIt, class BinaryOperation, class T> constexpr OutputIt inclusive_scan(InputIt first, InputIt last, OutputIt result, BinaryOperation binary_op, T init); template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2> ForwardIt2 inclusive_scan(ExecutionPolicy&& exec, ForwardIt1 first, ForwardIt1 last, ForwardIt2 result); template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class BinaryOperation> ForwardIt2 inclusive_scan(ExecutionPolicy&& exec, ForwardIt1 first, ForwardIt1 last, ForwardIt2 result, BinaryOperation binary_op); template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class BinaryOperation, class T> ForwardIt2 inclusive_scan(ExecutionPolicy&& exec, ForwardIt1 first, ForwardIt1 last, ForwardIt2 result, BinaryOperation binary_op, T init); // transform exclusive scan template<class InputIt, class OutputIt, class T, class BinaryOperation, class UnaryOperation> constexpr OutputIt transform_exclusive_scan(InputIt first, InputIt last, OutputIt result, T init, BinaryOperation binary_op, UnaryOperation unary_op); template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class T, class BinaryOperation, class UnaryOperation> ForwardIt2 transform_exclusive_scan(ExecutionPolicy&& exec, ForwardIt1 first, ForwardIt1 last, ForwardIt2 result, T init, BinaryOperation binary_op, UnaryOperation unary_op); // transform inclusive scan template<class InputIt, class OutputIt, class BinaryOperation, class UnaryOperation> constexpr OutputIt transform_inclusive_scan(InputIt first, InputIt last, OutputIt result, BinaryOperation binary_op, UnaryOperation unary_op); template<class InputIt, class OutputIt, class BinaryOperation, class UnaryOperation, class T> constexpr OutputIt transform_inclusive_scan(InputIt first, InputIt last, OutputIt result, BinaryOperation binary_op, UnaryOperation unary_op, T init); template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class BinaryOperation, class UnaryOperation> ForwardIt2 transform_inclusive_scan(ExecutionPolicy&& exec, ForwardIt1 first, ForwardIt1 last, ForwardIt2 result, BinaryOperation binary_op, UnaryOperation unary_op); template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class BinaryOperation, class UnaryOperation, class T> ForwardIt2 transform_inclusive_scan(ExecutionPolicy&& exec, ForwardIt1 first, ForwardIt1 last, ForwardIt2 result, BinaryOperation binary_op, UnaryOperation unary_op, T init); // adjacent difference template<class InputIt, class OutputIt> constexpr OutputIt adjacent_difference(InputIt first, InputIt last, OutputIt result); template<class InputIt, class OutputIt, class BinaryOperation> constexpr OutputIt adjacent_difference(InputIt first, InputIt last, OutputIt result, BinaryOperation binary_op); template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2> ForwardIt2 adjacent_difference(ExecutionPolicy&& exec, ForwardIt1 first, ForwardIt1 last, ForwardIt2 result); template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class BinaryOperation> ForwardIt2 adjacent_difference(ExecutionPolicy&& exec, ForwardIt1 first, ForwardIt1 last, ForwardIt2 result, BinaryOperation binary_op); // iota template<class ForwardIt, class T> constexpr void iota(ForwardIt first, ForwardIt last, T value); namespace ranges { template<class O, class T> using iota_result = out_value_result<O, T>; template<input_or_output_iterator O, sentinel_for<O> S, weakly_incrementable T> requires indirectly_writable<O, const T&> constexpr iota_result<O, T> iota(O first, S last, T value); template<weakly_incrementable T, output_range<const T&> R> constexpr iota_result<borrowed_iterator_t<R>, T> iota(R&& r, T value); } // greatest common divisor template<class M, class N> constexpr common_type_t<M, N> gcd(M m, N n); // least common multiple template<class M, class N> constexpr common_type_t<M, N> lcm(M m, N n); // midpoint template<class T> constexpr T midpoint(T a, T b) noexcept; template<class T> constexpr T* midpoint(T* a, T* b); // saturation arithmetic template<class T> constexpr T add_sat(T x, T y) noexcept; // freestanding template<class T> constexpr T sub_sat(T x, T y) noexcept; // freestanding template<class T> constexpr T mul_sat(T x, T y) noexcept; // freestanding template<class T> constexpr T div_sat(T x, T y) noexcept; // freestanding template<class T, class U> constexpr T saturate_cast(U x) noexcept; // freestanding }