名前空間
変種
操作

std::sqrt(std::valarray)

From cppreference.com
< cpp‎ | numeric‎ | valarray
 
 
 
 
ヘッダ <valarray> で定義
template< class T >
valarray<T> sqrt( const valarray<T>& va );

va の各要素について、その要素の値の平方根を計算します。

目次

[編集] パラメータ

va - 操作を適用する値の配列

[編集] 戻り値

va の値の平方根を含む値配列。

[編集] 注釈

計算を実行するために、修飾されていない関数(sqrt)が使用されます。そのような関数が利用できない場合、引数依存の名前探索により、std::sqrt が使用されます。

この関数は、std::valarray とは異なる戻り値型で実装される場合があります。その場合、代替型は以下のプロパティを持ちます。

  • std::valarray のすべての const メンバ関数が提供されます。
  • std::valarraystd::slice_arraystd::gslice_arraystd::mask_array、および std::indirect_array は、代替型から構築できます。
  • 2つの const std::valarray<T>& 引数を受け取るすべての関数について、代替型を受け取る同一の関数が追加されます(begin() および end() を除く)。
  • 2つの const std::valarray<T>& 引数を受け取るすべての関数について、const std::valarray<T>& と代替型のすべての組み合わせを受け取る同一の関数が追加されます。
  • 戻り値型は、最も深くネストされた引数型に対して、2レベル以上のテンプレートネストを追加しません。

[編集] 実装例

template<class T>
valarray<T> sqrt(const valarray<T>& va)
{
    valarray<T> other = va;
    for (T& i : other)
        i = sqrt(i);
 
    return other; // proxy object may be returned
}

[編集]

複数の三次方程式の3つの根(2つは複素共役である可能性があります)を一度に求めます。

#include <cassert>
#include <complex>
#include <cstddef>
#include <iostream>
#include <numbers>
#include <valarray>
 
using CD = std::complex<double>;
using VA = std::valarray<CD>;
 
// return all n complex roots out of a given complex number x
VA root(CD x, unsigned n)
{
    const double mag = std::pow(std::abs(x), 1.0 / n);
    const double step = 2.0 * std::numbers::pi / n;
    double phase = std::arg(x) / n;
    VA v(n);
    for (std::size_t i{}; i != n; ++i, phase += step)
        v[i] = std::polar(mag, phase);
    return v;
}
 
// return n complex roots of each element in v; in the output valarray first
// goes the sequence of all n roots of v[0], then all n roots of v[1], etc.
VA root(VA v, unsigned n)
{
    VA o(v.size() * n);
    VA t(n);
    for (std::size_t i = 0; i != v.size(); ++i)
    {
        t = root(v[i], n);
        for (unsigned j = 0; j != n; ++j)
            o[n * i + j] = t[j];
    }
    return o;
}
 
// floating-point numbers comparator that tolerates given rounding error
inline bool is_equ(CD x, CD y, double tolerance = 0.000'000'001)
{
    return std::abs(std::abs(x) - std::abs(y)) < tolerance;
}
 
int main()
{
    // input coefficients for polynomial x³ + p·x + q
    const VA p{1, 2, 3, 4, 5, 6, 7, 8};
    const VA q{1, 2, 3, 4, 5, 6, 7, 8};
 
    // the solver
    const VA d = std::sqrt(std::pow(q / 2, 2) + std::pow(p / 3, 3));
    const VA u = root(-q / 2 + d, 3);
    const VA n = root(-q / 2 - d, 3);
 
    // allocate memory for roots: 3 * number of input cubic polynomials
    VA x[3];
    for (std::size_t t = 0; t != 3; ++t)
        x[t].resize(p.size());
 
    auto is_proper_root = [](CD a, CD b, CD p) { return is_equ(a * b + p / 3.0, 0.0); };
 
    // sieve out 6 out of 9 generated roots, leaving only 3 proper roots (per polynomial)
    for (std::size_t i = 0; i != p.size(); ++i)
        for (std::size_t j = 0, r = 0; j != 3; ++j)
            for (std::size_t k = 0; k != 3; ++k)
                if (is_proper_root(u[3 * i + j], n[3 * i + k], p[i]))
                    x[r++][i] = u[3 * i + j] + n[3 * i + k];
 
    std::cout << "Depressed cubic equation:   Root 1: \t\t Root 2: \t\t Root 3:\n";
    for (std::size_t i = 0; i != p.size(); ++i)
    {
        std::cout << "x³ + " << p[i] << "·x + " << q[i] << " = 0  "
                  << std::fixed << x[0][i] << "  " << x[1][i] << "  " << x[2][i]
                  << std::defaultfloat << '\n';
 
        assert(is_equ(std::pow(x[0][i], 3) + x[0][i] * p[i] + q[i], 0.0));
        assert(is_equ(std::pow(x[1][i], 3) + x[1][i] * p[i] + q[i], 0.0));
        assert(is_equ(std::pow(x[2][i], 3) + x[2][i] * p[i] + q[i], 0.0));
    }
}

出力

Depressed cubic equation:   Root 1:              Root 2:                 Root 3:
x³ + (1,0)·x + (1,0) = 0  (-0.682328,0.000000)  (0.341164,1.161541)  (0.341164,-1.161541)
x³ + (2,0)·x + (2,0) = 0  (-0.770917,0.000000)  (0.385458,1.563885)  (0.385458,-1.563885)
x³ + (3,0)·x + (3,0) = 0  (-0.817732,0.000000)  (0.408866,1.871233)  (0.408866,-1.871233)
x³ + (4,0)·x + (4,0) = 0  (-0.847708,0.000000)  (0.423854,2.130483)  (0.423854,-2.130483)
x³ + (5,0)·x + (5,0) = 0  (-0.868830,0.000000)  (0.434415,2.359269)  (0.434415,-2.359269)
x³ + (6,0)·x + (6,0) = 0  (-0.884622,0.000000)  (0.442311,2.566499)  (0.442311,-2.566499)
x³ + (7,0)·x + (7,0) = 0  (-0.896922,0.000000)  (0.448461,2.757418)  (0.448461,-2.757418)
x³ + (8,0)·x + (8,0) = 0  (-0.906795,0.000000)  (0.453398,2.935423)  (0.453398,-2.935423)

[編集] 関連項目

2つのvalarray、またはvalarrayと値に関数std::powを適用する
(function template) [編集]
(C++11)(C++11)
平方根を計算する (x)
(関数) [編集]
複素数の平方根、右半平面の範囲
(関数テンプレート) [編集]
English 日本語 中文(简体) 中文(繁體)