名前空間
変種
操作

std::ranges::lower_bound

From cppreference.com
< cpp‎ | algorithm‎ | ranges
 
 
アルゴリズムライブラリ
制約付きアルゴリズムとRangeアルゴリズム (C++20)
制約付きアルゴリズム、例: ranges::copy, ranges::sort, ...
実行ポリシー (C++17)
シーケンスを変更しない操作
一括操作
(C++17)
検索操作
(C++11)                (C++11)(C++11)

シーケンスを変更する操作
コピー操作
(C++11)
(C++11)
スワップ操作
変換操作
生成操作
削除操作
順序変更操作
(C++17まで)(C++11)
(C++20)(C++20)
サンプリング操作
(C++17)

ソートおよび関連操作
パーティション操作
ソート操作
二分探索操作
(パーティション化された範囲)
集合操作 (ソート済み範囲)
マージ操作 (ソート済み範囲)
ヒープ操作
最小/最大操作
(C++11)
(C++17)
辞書順比較操作
順列操作
Cライブラリ
数値演算
未初期化メモリに対する操作
 
制約付きアルゴリズム
このメニューのすべての名前は名前空間 `std::ranges` に属します
シーケンスを変更しない操作
シーケンスを変更する操作
パーティション操作
ソート操作
二分探索操作 (ソート済み範囲)
lower_bound
       
       
集合操作 (ソート済み範囲)
ヒープ操作
最小/最大操作
       
       
順列操作
畳み込み操作
数値演算
(C++23)            
未初期化ストレージに対する操作
戻り値の型
 
ヘッダー <algorithm> で定義
呼び出しシグネチャ
(1)
template< std::forward_iterator I, std::sentinel_for<I> S,

          class T, class Proj = std::identity,
          std::indirect_strict_weak_order
              <const T*, std::projected<I, Proj>> Comp = ranges::less >
constexpr I lower_bound( I first, S last, const T& value,

                         Comp comp = {}, Proj proj = {} );
(C++20以降)
(C++26まで)
template< std::forward_iterator I, std::sentinel_for<I> S,

          class Proj = std::identity,
          class T = std::projected_value_t<I, Proj>,
          std::indirect_strict_weak_order
              <const T*, std::projected<I, Proj>> Comp = ranges::less >
constexpr I lower_bound( I first, S last, const T& value,

                         Comp comp = {}, Proj proj = {} );
(C++26以降)
(2)
template< ranges::forward_range R,

          class T, class Proj = std::identity,
          std::indirect_strict_weak_order
              <const T*, std::projected<ranges::iterator_t<R>,
                                        Proj>> Comp = ranges::less >
constexpr ranges::borrowed_iterator_t<R>

    lower_bound( R&& r, const T& value, Comp comp = {}, Proj proj = {} );
(C++20以降)
(C++26まで)
template< ranges::forward_range R,

          class Proj = std::identity,
          class T = std::projected_value_t<ranges::iterator_t<R>, Proj>
          std::indirect_strict_weak_order
              <const T*, std::projected<ranges::iterator_t<R>,
                                        Proj>> Comp = ranges::less >
constexpr ranges::borrowed_iterator_t<R>

    lower_bound( R&& r, const T& value, Comp comp = {}, Proj proj = {} );
(C++26以降)
1) 範囲 [ first, last ) 内で、value 以下ではない(つまり、より大きいか等しい)最初の要素を指すイテレータを返します。そのような要素が見つからない場合は last を返します。範囲 [ first, last ) は、式 std::invoke(comp, std::invoke(proj, element), value) に関して分割されている必要があります。つまり、式が true になるすべての要素は、式が false になるすべての要素よりも前に来る必要があります。完全にソートされた範囲はこの条件を満たします。
2) (1) と同じですが、ソース範囲として r を使用し、ranges::begin(r)firstranges::end(r)last として使用するかのようです。

このページで説明されている関数のようなエンティティは、アルゴリズム関数オブジェクト(非公式にはニーブロイドとして知られている)です。つまり、

目次

[編集] パラメータ

first, last - 検査する部分的に順序付けられた 範囲 を定義するイテレータとセンチネルのペア
r - 検査する部分的に順序付けられた範囲
value - 投影された要素と比較する値
comp - 投影された要素に適用される比較述語
proj - 要素に適用する射影

[編集] 戻り値

value 以下ではない最初の要素を指すイテレータ、またはそのような要素が見つからない場合は last

[編集] 計算量

実行される比較と射影の適用回数は、firstlast の距離の対数(最大 log2(last - first) + O(1) 回の比較と射影の適用)です。ただし、random_access_iterator をモデル化しないイテレータの場合、イテレータのインクリメント回数は線形です。

[編集] 注記

射影後、完全にソートされた(またはより一般的には value に関して部分的に順序付けられた)範囲では、std::ranges::lower_bound は二分探索アルゴリズムを実装します。したがって、std::ranges::binary_search はそれを利用して実装できます。

機能テストマクロ 規格 機能
__cpp_lib_algorithm_default_value_type 202403 (C++26) アルゴリズム (1,2) のためのリスト初期化

[編集] 可能な実装

struct lower_bound_fn
{
    template<std::forward_iterator I, std::sentinel_for<I> S, class Proj = std::identity,
             class T = std::projected_value_t<I, Proj>,
             std::indirect_strict_weak_order
                 <const T*, std::projected<I, Proj>> Comp = ranges::less>
    constexpr I operator()(I first, S last, const T& value,
                           Comp comp = {}, Proj proj = {}) const
    {
        I it;
        std::iter_difference_t<I> count, step;
        count = std::ranges::distance(first, last);
 
        while (count > 0)
        {
            it = first;
            step = count / 2;
            ranges::advance(it, step, last);
            if (comp(std::invoke(proj, *it), value))
            {
                first = ++it;
                count -= step + 1;
            }
            else
                count = step;
        }
        return first;
    }
 
    template<ranges::forward_range R, class Proj = std::identity,
          class T = std::projected_value_t<ranges::iterator_t<R>, Proj>
          std::indirect_strict_weak_order
              <const T*, std::projected<ranges::iterator_t<R>,
                                        Proj>> Comp = ranges::less>
    constexpr ranges::borrowed_iterator_t<R>
        operator()(R&& r, const T& value, Comp comp = {}, Proj proj = {}) const
    {
        return (*this)(ranges::begin(r), ranges::end(r), value,
                       std::ref(comp), std::ref(proj));
    }
};
 
inline constexpr lower_bound_fn lower_bound;

[編集]

#include <algorithm>
#include <cassert>
#include <complex>
#include <iostream>
#include <iterator>
#include <vector>
 
namespace ranges = std::ranges;
 
template<std::forward_iterator I, std::sentinel_for<I> S, class T,
         class Proj = std::identity,
         std::indirect_strict_weak_order
             <const T*, std::projected<I, Proj>> Comp = ranges::less>
constexpr I binary_find(I first, S last, const T& value, Comp comp = {}, Proj proj = {})
{
    first = ranges::lower_bound(first, last, value, comp, proj);
    return first != last && !comp(value, proj(*first)) ? first : last;
}
 
int main()
{
    std::vector data{1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5};
    //                                 ^^^^^^^^^^
    auto lower = ranges::lower_bound(data, 4);
    auto upper = ranges::upper_bound(data, 4);
 
    std::cout << "found a range [" << ranges::distance(data.cbegin(), lower)
              << ", " << ranges::distance(data.cbegin(), upper) << ") = { ";
    ranges::copy(lower, upper, std::ostream_iterator<int>(std::cout, " "));
    std::cout << "}\n";
 
    // classic binary search, returning a value only if it is present
 
    data = {1, 2, 4, 8, 16};
    //               ^
    auto it = binary_find(data.cbegin(), data.cend(), 8); // '5' would return end()
 
    if (it != data.cend())
        std::cout << *it << " found at index " << ranges::distance(data.cbegin(), it);
 
    using CD = std::complex<double>;
    std::vector<CD> nums{{1, 0}, {2, 2}, {2, 1}, {3, 0}};
    auto cmpz = [](CD x, CD y) { return x.real() < y.real(); };
    #ifdef __cpp_lib_algorithm_default_value_type
        auto it2 = ranges::lower_bound(nums, {2, 0}, cmpz);
    #else
        auto it2 = ranges::lower_bound(nums, CD{2, 0}, cmpz);
    #endif
    assert((*it2 == CD{2, 2}));
}

出力

found a range [6, 10) = { 4 4 4 4 }
8 found at index 3

[編集] 関連項目

特定のキーに一致する要素の範囲を返す
(アルゴリズム関数オブジェクト)[編集]
要素の範囲を2つのグループに分割する
(アルゴリズム関数オブジェクト)[編集]
パーティション化された範囲のパーティションポイントを見つける
(アルゴリズム関数オブジェクト)[編集]
特定の値より大きい最初の要素へのイテレータを返す
(アルゴリズム関数オブジェクト)[編集]
与えられた値より小さくない最初の要素へのイテレータを返す
(関数テンプレート) [編集]
English 日本語 中文(简体) 中文(繁體)